Foil heating and cooling; injection beam absorber (ACD)

Alexander Drozhdin and Igor Rakhno

Fermilab

Project X Collaboration Meeting, September 11-12, 2009

Foil heating and cooling

0 4.3 ms

- Thermal analysis is performed for a single cycle (4.284 msec) with subsequent **radiation cooling** until next cycle.
- The hottest spot with linear dimension ≈ 0.3 mm (codes STRUCT/ORBIT)
- Heat *conduction* in the foil is *ignored* (ANSYS is not used)
- 2.67E13 proton/cycle @ $10 \text{ Hz} \rightarrow 2.67E14 \text{ proton/sec}$

•
$$\frac{\partial T}{\partial t} = \frac{N}{\rho c_p} \left| \frac{dE}{dz} \right| - \frac{\varepsilon \sigma_{SB}}{\Delta z \rho c_p} (T^4 - T_0^4)$$
 $0 \le t \le \tau_p$
 $\frac{\partial T}{\partial t} = -\frac{\varepsilon \sigma_{SB}}{2} (T^4 - T_0^4)$

$$\frac{\partial T}{\partial t} = -\frac{\varepsilon \sigma_{SB}}{\Delta z \rho c_p} (T^4 - T_0^4)$$

$$\tau_p \le t \le \tau$$

Measured dependence of specific heat, c_p, on T (graphite)

Foil heating and cooling

- Valeri Lebedev suggested taking into account that a fraction of generated δ-electrons will escape the foil thus reducing the amount of deposited energy. And the foil can be rotated by, e.g. 45 degrees, relative to the beam → extra reduction factor of 1.4 due to increased area of the hottest spot.
- Detailed calculation of the fraction was performed with MCNPX 2.6 code. It allows us to track electrons (and secondary photons) down to 1 keV. (Range of 1-keV electrons is approximately 1% of the foil thickness.) In this calculation uniform spatial distribution of generated δ-electrons was used. Realistic energy and angular distributions were employed.
- According to MCNPX 2.6, 23% of energy deposited in the 600- μ g/cm² carbon foil by 2-GeV protons due to ionization (dE/dx) will be taken away by the δ -electrons. That is, 77% of the initially deposited energy will give rise to the foil heating.

Foil temperature without rotation

Foil rotation \rightarrow T_{max} / 1.4 = 3320 / 1.4 \approx 2350 K \rightarrow **ANSYS can help**

Injection beam absorber

- Calculations with STRUCT and MARS codes
- Surface water activation
- Power density in magnet coils
- Residual activation
- Beam parameters: 2.67 10¹³ 2-GeV proton/pulse @ 10 Hz;
 Beam power 85 kW

Example of STRUCT output which serves as an input to MARS code

- 2% of H⁻ miss the foil \rightarrow Q₁
- 1% of $H^0 \rightarrow$ absorber

Geometry

Plan view Cross section

Steel absorber with inner radiation trap (R_{in} =4cm/14cm, R_{out} =40cm, L=400cm) \approx 15300 kg Concrete block under absorber (18cm x 108cm x 400 cm) \approx 1900 kg Steel plate to the right of absorber (100cm x 28cm x 400 cm) \approx 8900 kg Steel plate under the absorber (10cm x 108cm x 400 cm) \approx 3400 kg Marble layer \approx 1300 kg

Calculated star density distributions

Plan view

Elevation view

Surface water activation (using sump pumps)

- Groundwater activation takes more time and requires analysis of geological structures (K. Vaziri).
- For this beam absorber and shielding composition the calculated $S_{max} \approx 1.07E5 \text{ star/cm}^{3*}\text{sec}$
- According to Concentration Model it means the surface water gets
 activated to the permitted max in about 6 months → removal of activated
 water 2 times a year. Common practice is to do that once a year.

Absorbed dose in magnet coils

Usually **epoxy** can survive absorbed dose up to 400 Mrad = 4 MGy

Dipole $\rightarrow \approx 100 \text{ yrs}$ Quad $\rightarrow 0.6 \text{ MGy/yr} \rightarrow 7 \text{ yrs}$

Residual dose (it is good to have it $\approx 100 \text{ mrem/hr}$)

Plan view

Elevation view

Conclusions

- Foil heating without taking into account heat conduction is too high (≈2350 K). ANSYS calculations should provide more realistic data.
- Surface water activation can be reduced by means of absorber/shielding optimization. With current design, removal of activated water can be required two times a year.
- Residual activation: The beam line components, both absorber and the 1st quad downstream, reveal some hot spots with $D_{max} \approx 10^3$ mrem/hr. The problem can be mitigated with **extra marble shielding** applied to the downstream end of the absorber and upstream end of the quad.
- The 1st quad downstream of the absorber (**epoxy in its coils**) will survive for about **7 years**. The lifetime can be increased by means of further increase of length of the absorber.